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Abstract— General Linear Model is a statistical approach to 

enable an accurate analysis of NIRS signal. In this study. the 

fNIRS data are regressed using a linear combination of task-

related regressors plus an error term. The mental tasks related 

regressors are obtained by convolving boxcar functions, that 

correspond to our experimental design with HRF. 

Experimentally the signal was acquired from a functional NIRS 

system during the brain activation from the participant while 

visual stimulation task. The block design for data acquisition 

consists of 40s rest and 60s task in repetition. From the measured 

data, oxy-hemoglobin was estimated and considered for 

parametric analysis. We observed a statistical significance of 

p<0.9 from our analysis. 

Keywords— Functional NIRS, General Linear Model, 

Hemodynamic Response Function, Cerebral Hemodynamic 
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I. INTRODUCTION 

The worldwide energy reserves are running down to the 
alarming rate, which is a major international concern at 
economic, ecological, manufacturing and society levels [1]. 
And with the concern is escalating over global climate 
changes, policy makers are advancing the renewable energy 
sources (RESs) as a means of meeting emissions reduction 
goals. A gridable vehicle (GV) is a modified version of the 
plug-in hybrid electric vehicle or an electric vehicle (EV) that 
can bring about a revolution in the energy and transportation 
sectors. To be economical, and have environmental and 
societal impacts, next generation vehicles (gridable vehicles) 
should have capability to charge and discharge from the grid in 
an intelligent manner that maximizes the utilization of RESs. 
Furthermore, a major portion of global emission represented in 
the power and energy consumption in the industrial sector, in 
which 40% of the global CO2 production occurs. 
Transportation sector is responsible for 24% [2]. The projected 
costs of an escalating climate change are to the extent that 20% 
of the global domestic product (GDP). Nevertheless, these 
costs could be restricted to just about 1% of GDP by taking the 
proper measurements [3]. In Addition, Climate is also 
changing due greenhouse gas emission. And it is now 
extensively acknowledged as a real condition that has likely 
serious effects for human society. Therefore, it is essential for 
industries to put this factor into their concerns as well as their 
strategic plans [4]. Therefore, environment friendly modern 
planning is essential. And the new energy plan encourages us 

to deploy the electric vehicles on the road. Not mentioning the 
huge electric vehicles are charged from present electric grid 
randomly, the peak load will be very high. Thus it will result 
economically and environmentally expensive especially if 
thermal power plants remain the major source of electric 
energy. PHEV and EV researchers have mainly concentrated 
on interconnection of energy storage of vehicles and grid [5-
11]. Their goals are to educate about the environmental and 
economic benefits of PHEV and EV, and to enhance the 
product market. However, power system reliability consists of 
system security and adequacy. A smart power system is 
adequate if there is a sufficient power supply to meet customer 
needs with minimum cost and emission. PHEVs, by 
themselves, cannot solve the emission problem completely, 
because they need electric power which is one of the main 
sources of emission. Therefore, success of practical application 
of PHEVs and EVs greatly depends on the maximum 
utilization of renewable energy so that the goal of cost-
emission reduction is achievable. However, the integration of 
GVs with RESs in a smart grid with the appropriate control 
technology has the potential for cost-emission reduction.  

Therefore, by using the smart grid it maximizes the 
utilization of renewable energy; improves reliability and 
security; and provides sufficient customer choice and 
affordability as seen in figure 1. Where A,B,C, E: RESs; D: 
Emissions proportional to energy taken from thermal power 
plants; F: GV as a small portable power plant (SP3), load or 
energy storage;  G: Smart parking lot (SmartPark) as a virtual 
power plant (VPP), bulk load or bulk energy storage; H: An 
information and communication device (ICD) in a GV to 
interact with a distribution center. Distribution center carrying 
out real-time dynamic stochastic optimization for cost and 
emission reduction A true smart grid with GVs and RESs will 
be a complex system in a dynamic environment. Traditional 
static optimization methods cannot meet the requirements of a 
smart grid in real-time. Such a smart grid calls for dynamic 
stochastic optimization techniques to achieve in real time cost 
and emission reductio.  

II. MATERIAL AND METHODOLOGY  

2.1 General Linear Model (GLM) 

GLM is a statistical approach to enable an accurate 

analysis for NIRS signal. The model describes the data as a 

linear combination of functions plus an error term. The model 

is mathematically expressed as: 
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     (1) 

Where, Y(t) is the fNIRS data and X(t) is the regressor matrix 

which consists of vectors of regressor functions. The regressor 

matrix was consisted of a block-design model function derived 

by hemodynamic response function [9], baseline offset and 

baseline drift components. The coefficient for the block-

design model in β can be determined as the beta value 

representing the intensity of the fNIRS signal which changes 

with the given task. In our experiment, we focused only on 

oxy-Hb concentration for the GLM approach. Eq. (1) can be 
re-written in terms of oxy-Hb concentration which is 

explained in following steps. 

Let  and  denote the time-series 

of the oxy-Hb signal and noise at the i-th channel at the 

location ri given by 

  (2) 

  (3) 

Then the corresponding GLM model is given by  

   (4) 

Where  denotes the design matrices for 

oxy-Hb, and  is the corresponding response 

signal strength at the i-th channel respectively.  

The least-squares estimation of  is given by 

      (5) 

Where X* is the pseudo-inverse matrix of X and is given by 

    (6) 

The regression coefficient β and the residual error  are tested 

with the one sample t-statistics test. The t values are calculated 

by  

     (7) 

Where c is the contrast vector, which determines the array 

elements of the regression coefficient  . 

 

2.2 Hemodynamic Response Function (HRF) 

Any kind of neuron activation in the brain will be 

responded by consumption of oxygen and increased blood 
flow in the surrounding area which can be considered as 

hemodynamic response. Functional MRI studies explored the 

measurement of blood oxygen level dependent (BOLD) 

contrast to investigate the functional activation of the brain. In 

the literature, Boynton, et al [10]; Friston, et al [11]; suggested 

a model for linear relationship between a stimulus and the 

BOLD signal based on linear time invariant (LTI) system. 

Their goal was to use information from the BOLD signal in 

making important conclusions about the neuronal activation. 

From the shape analysis of hemodynamic response function 

(HRF), information about the brain stimulation intensity, the 
latency and its duration can be extracted from the values of 

amplitude, delay and the duration respectively. However, the 

interpretability becomes more complex at higher statistical 

powers as the HRF is a non-linearity and complex function. A 

number of shape fitting models are available that potentially 

simplifies the characterization of HRF. Poisson function [11], 
Gamma function [12][13] and Gaussian functions [14][15] are 

available in the literature for modeling the HRF. After an 

elaborate investigation, the double Gamma function [16] is 

now being used in many of the studies.  

Since both fMRI and fNIRS methods have the common 

goal of recovering the hemodynamic response, the well 

established regression approach in fMRI studies have been 

extended to fNIRS measurements [17]. In our model based 

study, for analyzing fnirs time series data, we applied the 

GLM and used Gamma function as the HRF. In this study, 

fNIRS data are regressed using a linear combination of task 
related regressors plus an error term. The task related 

regressors are obtained by convolving boxcar functions, that 

corresponds to our experimental design with HRF. The 

starting and end of each event is coded by the boxcar function 

shape. The design matrix is comprised of task related 

regressor plus a constant term which models the expected 

hemodynamic response of the assigned task. Broadly, two 

types of studies are carried out with fNIRS method and they 

are, task-related and non-task relate. In the non-task related 

studies, which is also known as resting state fNIRS, the brain 

activation of the participants are analyzed during the 
participants are performing the given tasks that is out of scope 

in this paper. In our study, participant is allowed for a specific 

task and the design of the experiment is shown in Fig. (1). It 

has been designed as the participant allowed consecutively for 

rest and task over a time period of 40 second and 60 second 

respectively. In the figure only two blocks are shown which 

are repetitive. The brain stimulating events during the tasks 

are convolved with the hrf and the design matrices are 

produced. For demonstrating the design model, random signal 

was generated which was then compared with convolved 

result to get the output signal. All these steps were executed in 

MATLAB (The MathWorks Inc., MA, USA) software 
platform. 

 

 

 

 

 

 

 

 

Figure 1. Block design of time sequence 

 
2.3 Experimental Paradigm 

In our experiment, we asked volunteers to watch a video 

clip which was played on the desktop computer. Before the 

commencement of the task. He was allowed to take rest by 

closing eyes and staying calm. We used fNIRS data were 

collected from a 22 channels fNIRS  topography system 

(LABNIRS, Shimadzu, Co., Japan) to measure the brain 

Rest Rest Task Task Rest 

40s 40s 40s 60s 60s 

Block #1 Block #2 
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activation of the volunteer during the task. The system utilizes 

three wavelengths of the light at 780nm, 805nm and 830nm 

that are passed through optical fiber bundle. One end of each 

fiber are coupled with the respective wavelength and another 
end terminate in a special textile made head cap. The cap is 

configured for optical source fibers and the photo-detector 

fibers keeping a gap of 3 cm between each pair of source and 

detector. These optodes are arranged in a standard 10-20 

electrode system. To acquire the data from the prefrontal 

segment of the brain, we used only 12 channels of the 

electrode positions which occupies the frontal part of the head 

when the cap is positioned on the head of the participant. The 

positions of electrodes are shown in Figure 2a. We collected 

the data from the designed experimental procedure (Figure 2b) 

and processed in MATLAB Software system. 
 

 

 

 

 

 

 

 

 

 

 
(a) 

 

 

 

 

 

 

 

 

 (b) 
Figure 2. Experimental setup. (a) shows the placement of 

optode housed in a head cap (b) Data acquisition procedure 
from a participant on visual stimulation for brain activation. 

 

Figure 3. Simulation results of the GLM 

III. RESULTS AND DISCUSSION  

As explained in above paragraphs, we developed a linear 

model to analyze the time series data obtained from fNIRS. In 

the GLM model, we incorporated the boxcar function 

corresponding the task which is shown in above figure. Then 

it was convolved with HRF which was modeled as double 

Gamma function. The model was initially tested by random 

signal. The signal with GLM model as output is shown in 

Figure 3.  

We measured oxygenated hemoglobin, deoxygenated 

hemoglobin and total hemoglobin data from the fNIRS system 
during the participant’s prefrontal brain activation. To observe 

theses changes hence to analyze the response of the brain 

activation, we considered the video clip as stimulating signal 

in the frontal cortex of the brain. For the GLM analysis, the 

data was loaded in an open source NIRS-SPM software which 

is accessible to the users. Output of the result is shown in 

Figure 4.  

 

Figure 4. Processed data from NIRS-SPM software 

 

In the figure, upper part of the figure window shows the 

raw data of oxy-Hb, deoxy-Hb and total-Hb quantities. The 

figure is captured over a region-of-interest during one block of 

the task. The bottom part of the same figure shows the 

processed and analyzed data. It has been shown that only oxy-

Hb is selected as parametric analysis in the NIRS-SPM 

software. The black colored data line shows the GLM output 

for the selected ROI. It is clear from the result that the 

response from the video clip appeared from the 40s. to 100s as 

the starting and end points of the neuronal stimulating signal. 
However, it can be seen that there is onset latency on either 

ends of the stimulus. 

IV. CONCLUSION  

In this work, we developed a model on the basis of linear 
time invariant system to analyze the fNIRS time series data. 
The model describes the data as a linear combination of 
functions plus an error term. In the statistical based general 
linear model (GLM) the simulation result obtained by 
convolving the boxcar function with hemodynamic response 
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function. Then, we collected experimental data from the fNIRS 
system with the subject watching a video clip for activating the 
brain during that task. The fNIRS signal was then analyzed 
from GLM in NIRS-SPM open source software. From the 
statistical analysis of the real signal the statistical significance 
of p<0.9 was observed. This shows that the model analysis and 
from experimental analysis, the t-score values are comparable. 
From the acceptable correlation study, it is hence demonstrated 
that the changes in hemoglobin concentration can be observed 
in the prefrontal cortex by functional near infrared 
spectroscopy method 
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