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Abstract— Predicting cooling load is essential for many 

applications such as diagnosing the health of existing chillers, 

providing better control functionality, and minimizing peak loads. 

In this study, short-term chiller and total building demand are 

acquired for five different commercial buildings in the Midwest 

USA. Four different machine learning models are then used to 

predict the chiller demand using the total building demand, 

outdoor weather data, and day/time information. Two data 

collection scenarios are considered. The first relies upon use of 

multiple weeks of data collection that includes very warm periods 

and season transitional periods where the outdoor temperature 

ranged from very warm to cool conditions in order to envelope all 

cooling season weather conditions. The second scenario employs 

use of contiguous data for a several weeks during only the warmest 

period of the year. The results show that using two or more 

separate time periods to envelope most of the weather data yields 

a much more accurate model in comparison to use of data for only 

one time period. These research findings have importance to 

energy service companies which often do short term audits 

(measurements) in order to estimate potential savings from chiller 

system upgrades (controls or otherwise).  

Keywords— Cooling load, Machine Learning, Building energy 

consumption 

I. INTRODUCTION 

    The cooling load is associated with the amount of removed 
heat energy from a space in order to maintain the inside air 
temperature within an acceptable range for human comfort. 
Predicting the cooling load for a building is essential for:  
developing building appropriate heating, ventilating, and air 
conditioning (HVAC) system design; optimally governing the 
existing cooling system functionality; evaluating the 
performance of existing cooling systems, e.g., continuously 
commissioning; and minimizing peak loads, all while 
maintaining the desired comfort in the space. The cooling load 
is influenced by weather conditions, building geometrical and 
envelope energy characteristics, building usage, building 
location, occupant schedule and behavior, lighting systems and 
controls,  heating, ventilation, and air conditioning (HVAC) 
system, controls, and scheduling, and also all sources of heat 
gains (solar fenestration, people, appliances, infiltration, and 
heat gain through the envelope). 

In practice, many buildings employ building automation 
systems to manage HVAC and other power systems operations 
and scheduling; ideally in a way that optimizes the energy 
performance of the buildings. in general, conventional building 
controls do not achieve optimal building energy use due to the 

increase in nonlinearity and complexity of modern HVAC 
systems [1] thus often the building energy systems manager will 
circumvent the controller in order to just keep things operational. 
Optimal performance is generally not realized. A new market 
for energy service providers (ESCOs) has emerged in the U.S. 
to leverage data available from Building Automation Systems 
(BAS) in order to estimate potential savings from their service 
of improving the HVAC controls to reduce energy. These 
service providers typically do not have access to the data 
contained in the BAS system, which may or may not have been 
archived, or may in fact not exist. So, these ESCOs will put data 
loggers in buildings for short periods of time to monitor things 
like chiller power. From this data they attempt to estimate the 
realizable savings for a year. Ultimately, their value estimate 
will guide a proposal to the building owner / manager for a 
performance contract, whereby they guarantee annual savings 
sufficient to justify their continuous commissioning service.  
Savings are inferred by comparing actual consumption to the 
predicted consumption in the absence of ESCO services. Thus, 
it is essential to be able to accurately forecast annual 
consumption.   

 The question this research asks is this: Can short-term chiller 
and total building demand be used to accurately predict annual 
chiller demand in order for an ESCO estimate potential energy 
savings from improvements. 

II.  BACKGROUND 

Many methods have been developed to predict the cooling 

load in both the design and operational phases of a building. 

These methods can be generalized into two categories; namely 

physical based models and data based models. These are 

described in more detail in the next sub-section. 

 
A. Physical Based Models 

Physical based modeling relies upon use of detailed 
specification of the parameters affecting the building cooling 
load described previously. It also relies upon mathematical 
models to predict the thermal behavior of an entire building or 
specific zone within a building (which mainly includes 
calculations of heat gain to a building). Presently, there are many 
commercial softwares available to do such modeling, such as 
TRNSYS, ESP-r, Trane Trace 7000, and the Department of 
Energy’s EnergyPlus. Even with this software, the calculation 
of building consumption based on physical models is still 
challenging. The building level data is often hard to obtain and 
fought with significant user error. Moreover, this type of 
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modeling requires substantial expertise on the part of the user as 
well as substantial time to collect the needed data and process. 
Thus, this type of modeling is often cost prohibitive [2] [3].    

Such modeling has been documented to be both inaccurate 
and inconsistent. For example, Beausoleil-Morrison 
documented a study where eight expert users were tasked with 
predicting annual space heating and cooling energy for a 
building using different simulation tools.  The variation in 
prediction was roughly 20% [4].  

Beausoleil-Morrison followed this study with another where 
users were considered non-expert. This type of user was deemed 
more realistic than the expert users employed in the prior study. 
Specifically, he relied upon twenty-one of his students to predict 
annual cooling and heating load using only two different 
simulation tools. A wider variation in the predictions was 
observed  (+-30%) [4].  

Berkeley et al. conducted such a study premised on this 
question: “What would happen if expert users employed an 
identical simulation tool and asked to predict the same loads?”  
Twelve professionals were given the same energy systems 
specifications and building drawings. These professionals were 
asked to predict annual gas and electrical consumption. For 
electricity, there was as much as 100% difference between 
predictions. The spread was much bigger for gas energy.  
Additionally, they found that the relative predictions from a 
specific expert were consistent, meaning, that when one expert 
predicted more consumption than others, they did so for all 
months [5]. 

Last of all, a 2000 study by Pigg and Nevius compared actual 
heating energy consumption for 147 houses to predicted space 
heating using Home Energy Rating System (HERS) software. 
The results indicated that the simulation tool failed to correctly 
predict space heating for leaky houses, houses with higher space 
heating bills, poorly insulated houses, and likely older houses 
[6]. Moreover, Delzendeh et al. (2017) documented several 
studies illustrating that the building actual consumption is up to 
three times higher than simulated building energy consumption 
[7].  

 Fundamentally, this review points to the shortcomings 
associated with physical-based energy modeling. Consumption 
predictions are seemingly dependent on both individual users 
and software tools.   

B. Data Based Modeling 

The burgeoning amount of building energy data is 
overwhelming researchers who are trying to utilize this data to 
drive energy reduction. Data based models employ statistical 
techniques to find the relationship between predictors (any 
characteristic which influences energy consumption) and the 
response (energy consumption or demand). This approach is 
now widely implemented to predict energy consumption with a 
high degree of accuracy. Some advantages of data based 
modeling are as follows: 1) it is valid for online application; 2) 
it has the ability to run different models at the same time and 
compare the results to get the best model; 3) it has fewer 
predictors compared to physics-based modeling methods; and 4) 
it does not require building and energy system details [2] [3].  

The problem of estimating cooling and heating loads based 
on data driven models was first addressed by Kashiwagi and 
Tobi (1993). The authors used three months (June-August) of 
measured summer data to develop a Neural Network along with 
Kohonen's Feature Map and Vector Quantization (LVQ) to 
predict heating and cooling loads.  The validation of the model 
involved model application to September and October meter 
periods. The results were very promising [8]. Since that time, 
estimating cooling load based on data driven models have been 
thoroughly described in the literature in various ways. Table I 
provides a summary of the researches conducted to predict 
chiller power. Shown in the table are the data type, the features 
used to predict chiller power, the target, the duration of training 
and testing date used to develop a model.  

Table I demonstrates that some researches rely on physical 
based modeling to generate the training and testing set. The bias 
that physical based modeling cause was discussed in section 
II.A.  In addition, some studies focused on estimating annual 
cooling load which can be useful for early design of the HVAC 
systems for new buildings but does not help with the control 
strategies or estimating savings from applying energy efficiency 
measurements.  Moreover, Predicting next day load also might 
not be sufficient for long future plan for upgrading or 
implementing new retrofit. Finally, the prediction of seasonally 
hourly load was discussed in two studies but neither study 
investigate the effect of utilizing multiple time period on 
predicting cooling load.  

In summary, prior studies have sought to develop a model to 
predict chiller demand strictly from knowable time related data 
and overall building demand. Additionally, prior research has 
often been casual in terms of documenting the extent of the 
training data. Prior research has not considered use of multiple 
data collection periods in terms of developing a model 
generalizable to all seasons. Lastly, Prior research has not 
predicted 15 minutes interval cooling load for entire season.  

III. GOALS 

In this context, we are effectively asking “Can short-term 
seasonal chiller data taken at one period of time or at multiple 
periods of time be used to construct a model to predict chiller 
demand based upon total demand that is generally applicable to 
long-term (annual) future prediction?“ This type of data could 
be collected by an ESCO in an energy audit over a two- or three-
week period or over several periods at different points in time.  
Doing so will permit chiller health to be assessed in the future 
simply from whole building demand. Ultimately, this option 
could represent a low-cost solution for chiller health monitoring 
in particularly small-sized buildings.  

More specifically, this research thus seeks to:  

• Predict chiller demand relying solely upon short-term 
data, taken over two or three periods of time, with 
machine learning from total load. 

• Evaluate and compare four different data mining 
prediction methods for estimating chiller demand 
(Boosting, Random Forest (RF), support vector 
machine (SVM), and artificial neural network (ANN). 
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Table I:  Literature review summary 

  

Article Data Type Primarily Engineering Features Target 
Duration of Training 

Data 
Duration of 
Testing Data 

Cooling load prediction in a 
district heating and cooling 
system through simplified 

robust filter and multi-layered 
neural network [9] 

Measured 
 

Temperature, and day of the week 
Next day 

hourly load 

Four fifth of five-week data was used 
for training, while the remainder was 

used for testing 

Hourly cooling load prediction 
by a combined forecasting 
model based on analytic 

hierarchy process [10] 

Calculated 
based on 

actual 
measurement 

Load at t − 24 hours, ambient temperatures, 
and solar insolation data  

 

Next day 
hourly load 

One day One day 

Predicting cooling loads for 
the next 24 hours based on 
general regression neural 

network: methods and results 
[11] 

Measured 
Ambient temperature, relative humidity, and 

solar radiation intensity 
Next day 

hourly load 

Building 1: 
June 2011 to March 

2012 
Building 2: 

July 2011 to june 
2012 

Building 1: 
April 2012 
Building 2: 

July and 
august 2012 

Cooling-load prediction by the 
combination of rough set 

theory and an artificial neural-
network Based on data-fusion 

technique [12] 

Measured 
 

Return air temperature, return air relative 
humidity supply, air temperature supply air 
relative, humidity supply air pressure, room 
air temperature, room air relative humidity 

room, and air pressure, 

Next day 
hourly load 

240 hours 

24 h for 
testing 
24 h for 

validation 
 
 

Development and validation 
of a simplified online cooling 
load prediction strategy for a 

super high-rise building in 
Hong Kong [13]  

Measured 

Temperature 
Relative humidity 

Solar radiation  
Cloudiness 

Next day 
hourly load 

From mid-june to early august 

Heating and cooling load 
prediction using a neural 

network system [8] 

Measured 
 

Maximum temperature, and minimum 
temperature 

 

Average daily 
cooling load 

One month 
(aug,1992) 

Two months 
(sep. And 
oct,1992) 

An improved office building 
cooling load prediction model 
based on multivariable linear 

regression [15] 

Measured 

Daily maximum dry-bulb temperature, daily 
maximum wet-bulb temperature, daily mean 
dry-bulb temperature, and daily mean wet-

bulb temperature. 

Average daily 
cooling load 

July 25 to august 31, 
2012 

July 25 to 
august 31, 

2013 
(updated after 

correcting 
prediction 

error) 

Data-driven heating and 
cooling load predictions for 

non-residential buildings 
based on support vector 

machine regression and NARX 
recurrent neural network: a 

comparative study on district 
scale [16] 

Measured 

Dew point temperature, mean wind 
direction, mean wind velocity, outdoor 

temperature, precipitation intensity, 
precipitation quantity, relative humidity, 

school holiday time, working time schedule 

Monthly loads Two -years data 

Predicting hourly cooling load 
in the building: a comparison 

of support vector machine 
and different artificial neural 

networks [17] 

Simulated 

Outdoor dry-bulb temperature 
Previous hour outdoor dry-bulb temperature 

Previous 2 hours outdoor dry-bulb 
temperature 

Relative humidity 
Solar radiation intensity 

Previous hour solar radiation intensity 

Seasonally 
hourly load 

July 
May, June, 
august, and 

October. 

Building cooling load 
forecasting model based on 

LS-SVM [18] 
Simulated 

Dry-bulb temperature 
Relative humidity 

Solar radiation intensity 

Hourly load 
for 3 months 

May and June 
July, august, 

and 
September 

Re-evaluation of building 
cooling load prediction 

models for use in humid 
subtropical area [19] 

Simulated 
Dry-bulb temperature, horizontal solar 

radiation, room temperature set point, and 
cooling loads of previous 4 hours 

Predict 
cooling load 
for different 
thermostat 

set points 22◦, 
23◦, 24◦, 25◦ 

and 26◦ 

12 cases 48 cases 
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• Demonstrate the value in using multiple short-term 
measurement periods in developing a model capable of 
forecasting over a much longer period of time. 

The remainder of this paper provides an overview of these 
techniques, previous research applying these approaching to 
building and chiller demand prediction, and methodology with 
results for this research. 

IV.  CASE STUDIES 

With the intent to determine if short-term training data 
including both building chiller and total demand can be used to 
develop a forecasting models for chiller demand applicable to 
long periods of time, different types of buildings are considered. 
Data from five buildings total comprise this study. The buildings 
include: 

• two university buildings (an academic building and a   
dormitory) 

 

 

 

 

 

 

 

 
• one K-12 school buildings 

• a place of worship, gathering space, and some 
educational space; and 

• a health care / lab building 

Three weeks of measured data for the university buildings 
was collected; one week during the spring semester, one week 
between the spring and summer semesters, and one week during 
the fall. For the rest of the buildings, only two weeks of data 
during transition months when there is large outside temperature 
variation as well as significant cooling was used to build the 
models. For the academic buildings, two training data date 
periods minimally to account for seasonal occupancy. The 
measured data for all buildings are summarized in the Table II. 
Later the value of using multiple training periods relative to a 
singular one will be investigated.  For all of these buildings, 
chiller and total demand data (15 minutes interval) was 
collected. 

 

 

 

 

 

 

Modeling heating and cooling 
loads by artificial intelligence 
for energy-efficient building 

design [1] 

Simulated 
Relative compactness, surface area, wall 

area, roof area, overall height, orientation, 
glazing area, and glazing distribution 

Annual 
cooling load 

768 cases 

Prediction of heating load and 
cooling load of buildings using 

neural network [2] 
Measured 

Relative compactness, surface area, wall 
area, roof area, total height, orientation, 

glazing area, and glazing distribution 

Annual 
cooling load 

768 buildings 

Early predicting cooling loads 
for energy-efficient design in 
office buildings by machine 

learning [3] 
 

Simulated 

No. Of floors, building plan aspect ratio, 
window-to-wall ratio, outdoor air rate, floor 
area, window glass u-factor, exterior opaque 

wall’s u-factor, occupant density, lighting 
density, equipment density, indoor 

thermostat set point, cation, floor height, 
and overhang depth 

Annual 
cooling load 

243 buildings 

Predicting heating and cooling 
loads in energy-efficient 

buildings using two hybrid 
intelligent models [4] 

Online source 

Relative compactness, surface area, wall 
area, roof area, overall height, orientation, 

glazing area, and glazing area distribution of 
a residential building 

Annual 
cooling load 

768 sample 80% (614) training and 20% 
(154) testing 

Table II: Available measured data for all buildings. 
 

Building Training Data New Data (Testing) 

Acad. 1and Acad. 2 
 

Week 1 from 03/02/2017 to 09/02/2017 
Week 2 from 08/05/2017 to 08/11/2017 
Week 3 from 09/21/2017 to 09/27/2017  

03/02/2017 - 10/31/2017 

Church 
 Week 1 from 08/20/2017 to 08/26/2017 
Week 2 from 10/30/2017 to11/05/2017 

08/18/2017 - 11/15/2017 

Health care / lab 
Week 1 from 08/17/2017 to 08/23/2017 
Week 2 from 10/30/2017 to 11/05/2017 

08/02/2017 - 11/06/2017 

K-12 
Week 1 from 08/17/2017 to 08/23/2017 
Week 2 from 10/25/2017 to 10/31/2017 

08/02/2017 - 10/31/2017 
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V. METHODOLOGY  

The methodology is organized as follows. First, possible 
predictors for predicting the cooling load are hypothesized. 
Second, the factor or feature space is defined to establish the 
predictor ‘space’ for which a developed model will be valid.  
This step is one of the most critical elements of the research 
reported here.  The third step is to pre-process the data, by 
handling missing values, detecting collinearity and 
multicollinearity, and dealing with categorical variables. Next, 
various data mining approaches are used to predict model chiller 
demand using random subsets of data. Finally, using only the 
identified critical predictors, the data models are tested in 
estimating chiller performance in a variety of operating 
conditions. Figure 1 outlines the methodology used in this 
research.  

 

 

Figure 1: Methodology 

 

A. Hypothesize Possible Chiller Predictors 

The goal here is to identify and quantify all variables that 
likely influence chiller demand. Time parameters and weather 
parameters are both considered, as demand in every one of the 
buildings depends on the hour of day, day of week, and various 
weather conditions. Here the potential predictors include: 
working hours, weekends, holidays, hour of the day index, day 
of week index, occupancy fraction (for educational buildings 
only), outside temperature, actual demand, previous 24 hours 
demand, and previous 24 hours outside air temperature.  

The working hours factor is considered binary; it is assigned 
1 during typical working hours and 0 otherwise. So too is the 
weekends variable, which is assigned to 1 if a weekend and 0 
otherwise. For the university educational buildings, the 
occupancy fraction represents the normalized enrollment of 
students at any term during the year (1 for Fall – Spring 
semesters, 0.16 for intercessions, and 0.4 for Summer). These 
values correspond to the fraction of students on campus relative 
to the normal academic year.  

B. Characterize Design Space  

With potential predictors identified, it is important to 
characterize the factor space with respect to these variables, as 
any prediction model of the chiller will not be able to predict 

chiller performance if the model design space does not envelope 
the minimum and maximum chiller consumption. All new data 
must minimally fall between these minimum and maximum 
bounds.  

In order to ensure that all data points are within the design 
space, the chiller data for the coldest and the hottest weeks are 
chosen to build the model. From a practical perspective, this 
would be associated data logging during hot summer months 
and cold winter months when the outdoor temperature range 
varies from a most extreme value relative to heating or cooling 
to a value where heating or cooling is note present. Also, the 
reults section provides an idea of how much training data is 
required as well as the requirements for the training data. 

C. Pre-processing Steps 

Before applying the data mining techniques to develop a 
predictive model, typical pre-processing steps are applied to 
prepare the datasets. In order to avoid bias errors, the first step 
is to remove observations from the raw data with missing values 
in any of the columns.  

Collinearity occurs when two of the predictor variables in 
the dataset are highly correlated. Multicollinearity occurs in a 
dataset when one variable can be predicted with high accuracy 
from a linear combination of other variables. This causes the 
coefficients in the multiple regression to vary widely with small 
changes to the data, making it difficult to perform calculations 
with individual predictor variables. If the effects of individual 
predictors need to be evaluated, small degrees of 
multicollinearity can significantly affect the analysis. Most of 
the time multicollinearity has a negative effect in multiple 
regression models. Further, small sample sizes are more effected 
by multicollinearity [24].  

To correct for multicollinearity, the variable that depends 
linearly on a set of other variables is removed from the dataset, 
retaining the variable or variables with highest variable 
importance. Several tests in R, such as the variance inflation 
factor (VIF) and the condition number (which is the ratio of max 
to min eigenvalues), are available to determine whether or not 
collinearity is present in the dataset. The VIF is calculated by: 

 

𝑉𝐼𝐹 =
1

1 − 𝑅𝑖
2 

 

(1) 

 

where 𝑅𝑖
2   is the R2-value obtained by regressing 

the ith predictor on the remaining predictors. 

Lastly, predictors such as working hours, minutes since 
occupied index, minutes since occupied index, weekends, 
holidays, hour of the day index, and day of the week index are 
categorical variables even they have been written as numbers. In 
order to use them accurately in the models, these variables must 
be coded as dummy variables. For each level of categorical 
variables, a new dummy variable will be created. This means, if 
a categorical variable has five levels, then five dummies 
variables are created to replace this variable.  
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D. Building Models and Cross Validation  

Neural network, Support Vector Machine, Random Forest, 
and Boosting Random Forest techniques were used to build the 
model. Cross validation was used to enhance each model. 
Random Forest does not really need cross validation since the 
out-of-bag performance for a Random Forest is similar to cross 
validation. However, since we here compare RF against other 
models that do not use bagging in the same way, it is wise to use 
cross validation with all models including RF.   

The general procedure of developing a predictive model is 
to build a model with training data set, and then test the model 
on one or several validation data sets which weren’t used for 
training. Model overfitting can be a real issue for any regression 
model. It can lead to an unreal high R-squared value. Model 
overfitting occurs when the number of predictors are too many 
compared to the number of observations. An overfit model 
would often not fit new data, which almost always is associated 
with error as compared to the original data or may have points 
that fall in between the training data feature values.  

A k-fold cross-validation approach is a good way to avoid 
model overfitting. In k-fold cross-validation, the training data 
set is split into k equally exclusive subsets (folds) that have 
almost the same size [25]. For example, in 10-fold cross 
validation, the training data is divided into 10 subsets. In the 
process, the first of the ten folds of the sample is used for testing 
and the rest for training. The error in testing is calculated. The 
same procedure is applied to the remaining folds. Lastly, the 
average error rate from all of the folds is calculated. The goal of 
using cross validation is to avoid model overfitting. 

E. Model Evaluation Metrics 

The performance of each algorithm was evaluated based on 
a new data that does not include the training nor the testing data 
sets. The following sections show the R-squared value and the 

 

 

• Model Performance for Different Measurement Time 

Periods 

In this section, results are presented to show the potential for 
developing models to predict chiller using only total demand and 
demonstrating the value of using multiple training periods to 
develop a more generalizable model. 

mean square error (MSE) for both models and new data for all 
algorithms and all buildings.. R-squared value and the MSE, 
defined as equations 2 and 3 respectively: 

 

𝑅2   = 1 −  
𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝑇𝑜𝑡𝑎𝑙

 (2) 

 

where 𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛   is the sum squared regression error and  

𝑆𝑆𝑇𝑜𝑡𝑎𝑙  is sum squared total error   

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖

𝑛

𝑖=1

− 𝑌𝑖̂)
2 

 

(3) 

 

Here, n is the number of data points, 𝑌𝑖̂is the observed value, 

and 𝑌𝑖̂ is the predicted value. 

VI. RESULTS  

This section is organized to discuss the results of the pre-
processing data (collinearity and multicollinearity), model 
performance for different measurement time periods using 
different algorithms, and model performance using single one- 
period training data using different algorithms. 

• Collinearity and Multicollinearity 

After conducting a variance inflation factor (VIF) test to 
detect multicollinearity, variables that have multicollinearity 
were excluded from the training set before building the model. 
The results of VIF test for each building are summarized in 
Table III. Only two of the buildings exhibited multi-
collinearitybetween predictors.  

  

 

 

The performance of the four machine learning algorithms 
was tested and evaluated for each of the buildings employing all 
of the training data available.  Table 3 shows the validation 
metrics for each building. It also shows the error metrics for 
model application to longer-range new data. The duration and 
extent of this new data was defined in Table 1 for each of the 
buildings.  

Table III:  VIF test results. 

 

 
Building 

Collinear variables that 
should be excluded 

Correlation Coefficients 

Minimum correlation Maximum correlation 

Acad. 1 No Multicollinearity Hour of the Day ~ Occupancy Fraction: 0 Bldg. Total kW ~ Previous 24hrs kW: 0.90 

Acad. 2 No Multicollinearity Working Hours ~ Day of The Week: -0.001 Last 24hrs OAT ~ OAT:  0.85 

Church No Multicollinearity Day of the Week ~ Hour of The Day:  -0.001 OAT ~ Previous 24hrs OAT:  0.90 

Health care / lab No Multicollinearity Previous 24hrs Bldg. kW ~ Hour of The Day:0.012 Previous 24hrs OAT ~ Total Bldg. kW: 0.85 

K-12. 1 No Multicollinearity Day of the Week ~ Hour of The Day:  0 Is Weekends ~ Day of the Week:  0.79 
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Above all, Table IV shows that there is not one algorithm 
that provides the absolute best predictive model based upon 
short duration training data capable of forecasting extended 
periods.  The best models for the other buildings generally 
performed well, although the statistical metrics for application 
of the models to new data was in all cases below the similar 
metrics for model training validation. In some of the cases (see  

 

 

 

 Moreover, almost all models poorly predicted zeros values. 
This might due to the fact that the data used here is 15 minutes 
interval period where we see a lot more zeros compared to 
hourly data. Possibly, this issue could be solved by either 
applying moving average filter or use or by using two step 
machine learning where first we use classifier algorithm to 
predict zeros and no-zeros values. Then use regression to predict 
all non-zero value. 

The question is “Why are some of the models developed 
from short duration measurements of chiller and total demand 
more effective in predicting future chiller demand?  Figures 3 
and 4 help to illustrate why.  Figure 3 shows the training data 
distributions and the new data distributions for the most 
important features for Academic Building 2, for which the 
developed model performed the worst on the new data. Figure 4 
show similar data for the building with the best performing 
model on the new data.  

 

 

 

 

 

Academic Building 2), the testing metrics were well below the 
model training validation metrics. Additionally, as shown in 
Figure 2 which shows plots of the predicted versus actual chiller 
demand as applied to the extended new data, none of the models 
were effective in predicting 0 actual demand. The plot for 
Academic Building 2 particularly reveals the inability of the 
developed model to accurately predict the chiller demand.  

 

 

 

Figure 3 shows why the developed model from short-term 
measured data failed to forecast chiller demand for an extended 
period. Whereas the training and new data probability density 
distributions for outdoor temperature and total demand were 
comparable, the occupancy fraction distributions for the training 
and new data were quite different. The new data distribution for 
occupancy fraction included data during the summer semester 
for which there was no data in the training set. This period of 
time was associated with an occupancy fraction of 40% relative 
to the regular academic year.  

In contrast, the church building has consistent occupancy 
throughout the year. the training and new data probability 
density distributions for outdoor temperature and total demand 
are comparatively similar. This means that the training data well 
represent the entire season as shown in Figure 4.  

 

 

 

 

 

 

Table IV:  R2 and MSE for NN, SVM, RF, and B for training data and new data  
 

Building Algorithms 
Training Metrics  Testing Metrics for Model Application to New Data 

R2 MSE R2 MSE 

Acad. 1 

NN 99.8 % 1.70 94.8 % 45.92 

SVM 99.6 % 3.56 94.8 % 45.99 

RF 99.8 % 2.08 96.6 % 29.90 

B 99.8 % 1.74 97.9 % 18.04 

Acad. 2 

NN 95.1% 1.63 43.6 % 11.72 

SVM 98.9 % 0.37 55.9 % 9.16 

RF 98.5 % 0.48 74.4 % 5.31 

B 95.2 % 1.60 55.7 % 9.20 

Church 

NN 99.9 % 0.46 99.4 % 14.96 

SVM 99.2 % 17.31 91.9 % 219.02 

RF 99.6 % 8.40 97.7 % 60.40 

B 99.7% 5.71 99.2 % 21.10 

Health care / lab 

NN 92.4 % 669.26 81.0 % 932.13 

SVM 99.1 % 72.08 73.0 % 1324.71 

RF 99.3 % 59.40 88.8 % 549.18 

B 99.1 % 77.47 88.2 % 577.69 

K-12. 1 

NN 83.0 % 108.43 86.1 % 47.06 

SVM 84.0 % 101.76 76.9 % 78.12 

RF 84.2 % 100.34 88.1 % 40.12 

B 86.4 % 86.60 88.2 % 39.88 
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Figure 2: Best models results for actual chiller demand vs. predicted chiller demand for the new data 
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Figure 3: Probability density of most important predictors for training data and 

new data for Academic Building 2 

 

• Model Performance Using Single Time Training Data 

Period (continuous period for three weeks for Acad. 1and 

Acad. 2 and two weeks for the remaining buildings) 

 The selection of the data used to build the final model 
requires full understanding of building scheduling and behavior 
in order to help the algorithm find the underlying patterns of the 
training data. In this study for example, the training data used to 
develop the chiller demand models described in the previous 
section included data taken from multiple weeks that included 
very warm periods and season transitional periods where the 
outdoor temperature ranged from very warm to cool conditions.  

 

In general, the training data seemed to well represent the long-
term weather data and thus the developed model generally 
performed well except for Academic Building 2. However, for 
the university buildings, three weeks of measured data was used 
because the scheduling for university buildings is different and 
two weeks only were not enough to represent the whole season. 

 

Figure 4:Probability density of most important predictors for training data and 
new data for Church building 

 

In this section, the authors did not consider the design space. 
Instead of using two separate time periods to envelope most of 
the data points, we used continuous weeks the represent the 
warmest time of the year. In this context, for Acad. 1 and Acad. 
2 buildings three continuous weeks were used to build the model 
while only two continuous weeks were used to build the models 
for the remaining buildings. Table V summarizes the training 
and testing data periods for each of the buildings.  

Table VII shows the training validation metrics and the error 
metrics associated with application of the model to extended 
new data period.  Clear from this table is that the models 
developed, excluding that developed for the church building, do 
not accurately forecast chiller demand.  The MSE compared to 
that reported in Table IV using multiple training periods has 
increased by 295%, 184.55 %, 533.30%, and 25 % for Academic 
Building 1, Academic Building 2, the Church Building, the 
Health care / lab, and the K-12 Building respectively.   

 

 

Table V: Training and testing data periods for each of the buildings (continuous period) 

 
Building Training Data New Data 

Acad. 1and Acad. 2 8/8/2017 - 08/29/2017 03/02/2017 - 10/31/2017 

Church 8/19/2017 - 9/2/2017 08/18/2017 - 11/15/2017 

Health care / lab 08/17/2017 – 08/31/2017 08/02/2017 - 11/06/2017 

K-12. 1 08/17/2017 – 08/31/2017 08/02/2017 - 10/31/2017 
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VII. CONCLUSIONS AND DISCUSSION   

Different modeling approaches (Physical Based Model and 
Data Based Model) for predicting cooling load were reviewed 
and compared based on literature reports. Physical based model 
seems to be the only feasible approach for new buildings since 
it does not required measured data. In addition, physical based 
modeling requires detailed information about building envelope 
and HVAC system. This information is not required in data 
based models. Moreover, data based model is applicable for 
online application while physical based model is not. In term of 
accuracy, physical based model appears to have a substantially 
lower accuracy compared to data based model.  

In this study, a data based model approach was implemented 
to predict chiller kWh and chillier kW for 5 different buildings 
using two different serious for the training set. The first scenario 
is data taken from multiple weeks that included very warm 
periods and season transitional periods where the outdoor 
temperature ranged from very warm to cool conditions. While 
the second scenario is to utilize continuous data that represent 
the warmest period of the season only. In both scenarios, the 
length of the training data is the same. For university buildings, 
three weeks measured chiller data was used train the model 
whereas of two weeks for measured chiller data for each 
building was used to train the model. The results show that short 
period data (2-3 weeks) can possibly present long time period 
(one year for example). However, these short-term data have to 
be taken for the warmest and coldest weeks to envelope all data 
points. The ability of the training data to forecast the future 
depends upon how it reflects all future data. 

Finally, based on the results from the privous section, the 
best and the worst models in predicting new data varies from  

 

 

 

building to another. This leads us to conclude that there is not an 
absolute best predictive model that work for all data.  
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